000 O

03/058412 A2

(19) World Intellectual Property Organization

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

Iniernational Bureau

(43) International Publication Date

IR RN A R

(10) lnternational Publication Number

17 July 2003 (17.07.2003) PCT WO 03/058412 A2
(51) luternational Patent Classification’: GOG6F 1/00 (74) Agents: MALLIE, Michael, J. et al.; Blakely, SokolofT,
Taylor & Zafman, 12400. Wilshire Boulevard, 7th Floor,
(21) International Application Number: PCT/US0241177 Los Angeles, CA 90025 (US).
. . - (81) Designated States (national): AE, AG, AL, AM, AT, AU,
(22) International Filing Date: AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR. CU,
20 December 2002 (20.12.2002) CZ, DE, DK, DM, DZ, EC, EE, ES, F1. GB, GD. GE. GH,
GM, HR,HU, ID, IL, IN, IS, JP,KE, KG, KP, KR, KZ, LC,
(25) Filing Language: English LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
. MX, MZ,NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE,
(26) Publication Language: English SG, SK, SL, TJ, T, TN, TR, TT, TZ, UA, UG, UZ, VC,
VN, YU, ZA, ZM, ZW. .
(30) Priority Data: R L
(84) Designated States (regional): ARIPO patent (GH,.GM,
2 2 28.12.2 !
10/041,071 28 December _OOI (28.12.2001) US KE, LS, MW, Mz, SD, SL, SZ, TZ, UG, ZM, Zw)'
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU;, T1,T™M),
(71) Applicant: INTEL CORPORATION [US/US]; 2200 European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
Mission College Boulevard, Santa Clara, CA 95052 (US). ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, I, SK,_
TR), OAPI patent (BF, B), CF, CG, CI, CM, GA, GN, GQ.
(72) loventors: GLEW, Andrew; 13131 NW Mountainview GW, ML, MR, NE, SN, TD, TG).
Road, Portland, OR 97231 (US). SUTTON, James,
11; 20205 NW Paulina Drive, Poriland, OR 97229 Published: -

(US). SMITH, Lawrence, I1; 14995 NW Northumbria,
Beaverton, OR 97006 (US). GRAWROCK, David;
8285 Southwest 184th Avenue, Aloha, OR 97007 (US).
NEIGER, Gilbert; 2424 N.E. 11th Avenue, Portland,
OR 97212 (US). KOZUCH, Michael; 3515 Chapel Hill
Court, Export, PA 15632 (US). .

— without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazelte.

O (54) Title: AUTHENTICATED CODE METHOD AND APPARATUS

3 (57) Abstract: Apparatus and method load, authcnticate. and/or execute authenticated code modules stored in a private memory.

.BNSDOCILY. <WO__03058412A2_1_>

WO 03/058412 ' : PCT/US02/41177

AUTHENTICATED CODE METHOD AND

—

APPARATUS
RELATED APPLICATIONS
5 [0001] This application is related to Application Serial Number
/ . , entitled “Processor Supporting Execution Of An Authenticated

Code instruction”; and Application Serial Number __/ ., entitled

“Authenticated Code Module” both filed on the same date as the present

application.

10 BACKGROUND

[0002) Computing devices execute firmware and/or software code to
~ perform various operations. The code may be in the form of user applications,

BIOS routines, operating system routines, etc. Some operating systems provide
limited protections for maintaining the integrity of the computing device against

15 rogue code. For example, an administrator may limit users or groups of users to
executing certain pre-approved code. Further, an administrator may configure a
sandbox or an isolated-environment in which untrusted code may be executéd
until the administrator deems the code trustworthy. While tﬁe above techniques
provide some protection, they generally require an administrator to manually

20 make a trust determination based upon the provider of the code, historic '
performance of the code, and/or review of the source code itself.
[0003] Other mechanisms have also been introduced to pro\/ide automated
mechanisms for making a trust decision. For example, an entity (e.g. software

manufacturer) may provide the code with a certificate such as a X.509 certificate

BNSDOCIC: <WO__03058412A2_I_>

WO 013/058412 PCT/US02/41177

that digitally signs the code and aftests to the integrity of the code. An
administrator may configure an operating system to automatically allow users to
execute code that provides a certificate from a trusted entity without the
administrator specifically analyzing the code in question. While the above
S technique may be sufficient for some environments, the above technique

inherently trusts the operating system or other software executing under the
control of the operating system to correctly process the certificate.
[0004] Certain operations, however, may not be able to trust the operating
system to make such a determination. For example, the code to be executed

10 may result in the computing device determining whether the ope'rating system is
to be trusted. Relying on the operating system to authenticate such code would
thwart the\ purpose of the code. Further, the code to be executed may comprise
system initialization code that is executed prior to the operating system of the

computing device. Such code therefore cannot be authenticated by the operating

15 system.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005) The invention described herein is illustrated by way of example and
not by way of limitation in the accompanying figures. For simplicity and clarity of
ilustration, elements illustrated in the figures are not necessarily drawn to scale.
20 For example, the dimensions of some elements may be exaggerated relative to
other elements for clarity. Further, where considered appropriate, reference
numerals have been repeated among the figures to indicate corresponding or

analogous elements.

BNSDOCIC: <WO__03058412A2_1_>

WO 03/058412 PCT/US02/41177

[0006] FIGS. 1A-1E illustrate example embodiments of a computing device

having private memory.
[0007] FIG. 2 illustrates an example authenticated code (AC) module that
may launched by the computing device shown in FIGS. 1A-1E.

5 [0008] FIG. 3 illustrates an example embodiment of the processor of the

computing device shown in FIGS. 1A-1E.

[0009] FIG. 4 illustrates an example method of launching the AC module
shown in FIG. 2.
[0010] FIG. 5 illustrates an example method of terminating execution of the

10 AC module shown in FIG. 2.
[0011] FIG. 6 illustrates another embodiment of the computing device
shown in FIGS. 1A-1E.
[0012] FIGS. 7A-7B illustrate example methods of launching and
terminating execution of the AC moduie shown in FIG. 2.

15 [0013] FIG. 8 illustrates a system for simulating, emulating, and/or testing

the processors of the computing devices_ shown in FIGS. 1A-1E.

DETAILED DESCRIPTION

[0014] The following description describes techniques for launching and
’g'termi‘nating execution of authenticated code (AC) modules that may be used for
20 various operations such as establishing and/or maintaining a trusted computing
environment. In the following descﬁpﬁon, numerous speciﬁc details such as logic

implementations, opcodes, means to specify operands, resource

partitioning/sharing/duplication implementations, types and interrelationships of

ENSDOCID: <WO__03058412A2_1_>

WO 03/058412 PCT/US02/41177

system components, and logic partitioning/integration choices are set forth in
order to provide a more thorough understanding of the present invention. It will
be appreciated, however, by one skilled in the art that the invention may be
practiced without such specific details. In other instances, control structures, gate
5 level circuits and full software instruction sequences have not been shown in

detail in order not to obscure the invention. Those of ordinary skill in the art, with
the included descriptions, will be able to implement appropriate functionality
without undue experimentation.
[0015] References in the specification to “one embodiment’, “an

10 embodiment’, “an example embodiment’, etc., indicate that the embodiment
described may include a parfcicular feature, structure, or characteristic, but every
embodiment may not necgssariginclude the particular feature, structure, or
characteristic. Moreover, such phrases are not necessarily referring to the same
embodiment. Further, when a particular feature, structure, of characteristic is

15 described in connection with an embodiment, it is submitted that it is within the
knowledge of one skilled in the art to effect such feature, structure, or
characteristic in connection with other embodiments whether or not explicitly
described.
[0016] In the following description and claims, the terms “coupled” and

20 “connect®d,” along with their derivatives, may be used. It should be understood
that these terms are not intended as synonyms for each other. Rather, in
particular embodiments, “connected” may be used to indicate that two or more
elements are in direct physical or electrical contact with each other. “Coupled”

may mean that two or more elements are in direct physical or electrical contact.

4

BNSDOCIL: <WO__0305841242_1_>

WO 03/058412 PCT/US02/41177

However, “coupled” may also mean that two or more elements are not in direct
contact with each other, but yet still co-operate or interact with each other.
[0017] Example embodiments of a computing device 100 are shown in FIG.
1A-1E. The computing device 100 may comprise one or more processors 110
5 coupled to a chipset 120 via a processor bus 130. The chipset 120 may comprise
one or more integrated circuit packages or chips that couple the processors 11 0]
to system memory 140, a physical token 150, private memory 160, a media
interface 170, and/or other I/O devices of the computing device 100.
[0018] Each proéessor 110 may be implemented as a single integrated
10 circuit, multiple integrated circuits, or hardware with software routines (e.g., binary
translation routines). Further, the processors 110 may comprise cache memories
~ 112 and control fegisters 114 via which the ca\che memories 112 may be
configured to operate in a normal cache mode orin a cache-as-RAM mode. In
~ the normal cache mode, the cache memories 112 satisfy memory requests in
15 response to cache hits, replace cache lines in response to cache misses, and
may invalidate or replace cache lines in response to snoop requests of the
processor bus 130. In the cache-as-RAM mode, the cache memories 112
operate as random access memory in which requests within the memory range of
“the cache memories 112 are satisﬁe_d by the cache memories and lines of the
20 cache are not replac® or invalidated in response to snoop requests of the
processor bus 130. |
[0019] The processors 110 may further comprise a key 116 such as, for
example, a key of a symmetric cryptographic algorithm (e.g. the well known DES,
3DES, and AES algon’thms)ior of an asymmetric cryptographic algorithm (e.g. the

5

BNSDOCID: <WO__0305841242_1_>

WO 03/058412 PCT/US02/41177

well-known RSA algorithm). The processor 110 may use the key 116 to authentic
an AC module 190 prior to executing the AC module 180.
[0020] The processors 110 may support one or more operating modes
such as, for example, a real mode, a protected mode, a virtual real mode, and a
5 virtual machine mode (VMX mode). Further, the processors 110 may support one

or more privilege levels or rings in each of the supported operating modes. In
general, me operating modes and privilege levels of a processor 110 define the
instructions available for execution and the effect of executing such instructions.
More specifically, a processor 110 may be permitted to execute certain privileged

10 instructions only if the processor 110 is in an appropriate mode and/or privilege
level.
[0021] The processors 110 may also support locla\g of the processor bus
130. As a result of locking the processor bus 130, a processor 110 obtains
exclusive ownership of the processor bus 130. The other processors 110 and the

15 chipset 120 may not obtain ownership of the processor bus 130 until the
processor bus 130 is released. In an example embodiment, a processor 110 may
issue a special transaction on the processor bus 130 that provides the other
processors 110 and the chipset 120 with a LT.PROCESSOR.HOLD message.
The LT.PROCESSOR.HOLD bus message prevents the other processors 110

20 and the chipset 120 from acquiring owr;ership of the processor bus 130 until the
processor 110 releases the processor bus 130 via a LT.PROCESSOR.RELEASE
bus message.
[0022] The processors 110 may however support alternative and/or
additional methods of locking the processor bus 130. For example, a processor

6

BNSDOCIL: «<WO__03058412A2_ 1 >

WO 03/058412 PCT/US02/41177

110 may inform the other processors 110 and/or the chipset 120 of the lock
condition by issuing an Inter-Processor Interrupt, asserting a processor bus lock
signal, asserting a processor bus requeét signal, and/or causing the other
processors 110 to halt execution. Similarly, the processor 110 may release the
5 processor bus 130 by issuing an Inter-Processor Interrupt, deasserting a

processor bus lock signal, deasserting a processor bus request signai, and/or
causing the other processors 110 to resume execution.
[0023] The processors 110 may further support launching AC modules 190
and terminating execution of AC modules 190. In an example embodiment, the

10 processors 110 support execution of an ENTERAC instruction that loads,
authenticates, and initiates execution of an AC module 190 from private memory
160. However, the processors 110 may support additional or différeﬁf instructions
that cause the processors 110 to load, authenticate, and/or initiate execution of
an AC module 190. These other instructions may be variants for launching AC

15 modules 190 or may be concerned with other operations that launch AC modules
190 to help accomplish a larger task. Unless denoted otherwise, the ENTERAC
instruction and these other instructions are referred to hereafter as launch AC
instructions despite the fact that some of these instructions may load,
authenticate, and launch an AC module 190 as a side effect of another operation

20 such as, for example, establishing a trusted cgmputihg environment.
[0024] Inan e>l(ample embodiment, the processors 110 further support
execution of an EXITAC instruction that terminates execution of an AC module
190 and initiates post-AC code (See, FIG. 6). However, the processors 110 may

support additional or different instructions that result in the processors 110

7

BNSDOCID: <WO__03058412A2_1_>

WO 03/058412 PCT/US02/41177

terminating an AC module 190 and launching post-AC code. These other
instructions may be variants of the EXITAC instruction for terminating AC
modules 190 or may be instructions concerned primarily with other operations that
resultin AC modules 190 being terminated as part of a larger operation. Uniess
5 denoted otherwise, the EXITAC instruction and these other instructions are

referred to hereafter as terminate AC instructions despite the fact that some of
these instructions may terminate AC modules 190 and launch post-AC code as a
side effect of another operation such as, for example, tearing down a trusted
computing environment.

10 [0025) The chipset 120 may comprise a memory controller 122 for

~ controlling access to the memory 140. Further, the chipset 120 may complfise a
key 124 that the processor 110 may use to authentic an AC mocule 190 prior t;
execution. Similar to the key 116 of the procéssor 110, the key 124 may
comprise a key of a symmetric or asymrrj.etri_c cryptographic algorithm.

15 [0026] The chipset 120 may also combrise trusted platform registers 126 to
control and provide status information about trusted platform features of the
chipset 120. In an example embodiment, the chipset 120 maps the trusted
platform registers 126 to a private space 142 and/or a public space 144 of the
memory 140 to enable the processors 110 to access the trusted platform registers

20 126 in a consistent manner. -

[0027] For example, the 6hipset 120 may map a subset of the registers 126
as read only locations in the public spacé 144 and may map the registers 126 as
read/write locations in the private space 142. The chipset 120 may configure the

private space 142 in a manner that enables only processors 110 in the most

8

BNSDOCIC: <WO__03058412A2_|_>

WO 03/058412 PCT/US02/41177

privileged mode to access its mapped registers 126 with privileged read and write
transactions. Further, the chipset 120 may further configure the public space 144
in @ manner that enables processors 110 in all privilege modes to access its
mapped registers 126 with normal read and write transactions. The chipset 120
5 may also open the private space 142 in response to an OpenPrivate command
being written to a command register 126. As a result of opening the private space
142, the processors 110 may access the private space 142 in the same manner
as the public space 144 with normal unprivileged read and write transactions.
[0028] The physical token 150 of the computing device 100 comprises
10 protected storage for recording integrity metrics and storing secrets such as, for
~ example, encryption keys. The physical token 150 may perform various integrity
functions in response to requests from the processors 110 and the chipset 120.
In particular, the physical token 150 may store integrity metrics in a trusted
manner, may quote integrity metrics in a trusted manner, may seal secrets such
15 as encryption keys to a particular environment, and may only unseal secrets to
the environment to which they were sealed. Hereinafter, the term “platform key®
is used to refer to a key that is sealed to a particular hardware and/or software
environment. The physical token 150 may be implemented in a number of
different manners. However, in an example embodiment, the physical token 150
20 is implemented to comply with the specification of the Trusted Platform M;Jdule
(TPM) described in detail in the Trusted Computing Platform Alliance (TCPA)
Main Specification, Version 1.1, 31 July 2001.
[0029] The private memory 160 may store an AC module 190 in a manner
that allows the processor or processors 110 that are to execute the AC module

9

BNSDOCID: <WO__03058412A2__>

10

15

20

WO 03/058412 PCT/US02/41177

190 to access the AC module 190 and that prevents other processors 110 and
components of the computing device 100 from altering the AC module 190 or
interfering with the execution of the AC module 190. As shown in FIG. 1A, the
private memory 160 may be implemented with the cache memory 112 of the
processor 110 that is executing the launch AC instruction. Altematively, the
private memory 160 may be implemented as a memory area internal to the
processor 110 that is separate from its cache memory 112 as shown in FIG. 1B. |
The private memory 160 may also be implemented as a separate external
memory coupled to the processors 110 via a separate dedicated bus as shown in
FIG. 1C, thus enabling only the processors 110 having associated extemal
memofries to validly execute launch AC instructions.

[0030] “The private memory 160 may also be implemented via the system
memory 140. In such an embodiment, the chipset 120 and/or processors 1 10
may define certain regions of the memory 140 as private memory 160 (see FIG.
'1D) that may be restricted to a specific processor 110 and that may only be
accessed by the specific processor 110 when in a particular operating mode.
One disadvantage of this implementation is that the processor 110 relies on the
memory controller 122 of the chipset 120 to access the private memory 160 and
the AC module 190. Accordingly, an AC module 190 may not be able to
reconfigure the memory controller 122 without denying the processor 110 accass
to the AC module 190 and thus causing the processor 110 to abort execution of
the AC moduie 190.

[0031] The private memory 160 may also be implemented as a separate
memory coupled to a separate private memory controller 128 of the chipset 120

10

BNSDOCIL: <WO__03058412A2_1_>

WO 03/058412 PCT/US02/41177

as shown in FIG. 1E. In such an embodiment, the private memory controller 128
may provide a separate interface to the private memory 160. As a resuit of a
separate private memory controller 128, the processor 110 may be able to
reconfigure the memory controller 122 for the system memory 140 in a manner
5 - that ensures that the processor 110 will be able to access the pfivate memory 160

and the AC module 190. In general, the separate private memory controller 128
overcomeé some disadvantages of the embodiment shown in FIG. 1D at the
expense of an additional memory and memory controller.
[0032] The AC module 190 may be provided in any of a variety of machine

10 readable mediums 180. The media interface 170 provides an interface to a
machine readable medium 180 and AC module 190. The machine readable
medium 180 may comprise anv medium that can store, at least temporarily,
information for reading by the machine interface 170. This may include signal
transmissions (via wire, optics, or air as the medium) and/or physical storage

15 media such as various types of disk and memory storage devices.
[0033] Referring now to FIG. 2, an example embodiment of the AC module
190 is shown in more detail. The AC module 190 may comprise code 210 and
data 220. The code 210 comprises one or more code pages 212 and the data
220 comprises one or more data pages 222.° Each code page 212 and data page

20 222 in an example embodiment corresponds to a 4 kilobyte coﬁﬁguous memory
region; howevér, the code 210 and data 220 may be implemented with different
page sizes or in a non-paging manner. The code pages 212 comprise processor
instructions to be executed by one or more processors 110 and the data pages
222 comprise data to be accessed by one or more processors 110 and/or scratch

1"

BNSDOCID: « WO__03058412A2_1_>

WO 03/058412 PCT/US02/41177

pad for storing data generated by one or more processors 110 in response to
executing instructions of the code pages 212.
[0034] The AC module 190 may further comprise one or more headers 230
that may be part of the code 210 or the data 220. The headers 230 may provide
5 information about the AC module 190 such as, for example, module author,
copyright notice, module version, module execution point location, module length,
- authentication method, etc. The AC module 190 may further comprise a

signature 240 which may be a part of the code 210, data 220, and/or headers
230. The signature 240 may provide information about the AC module 190,

10 authentication entity, authentication message, authentication method, and/or

—

digest value.
{0035] The AC module 190 ma\y also comprise an end of module marker
250. The end of module marker 250 specifies the end of the AC module 190 and
may be used as an alternative to specifying the length of the AC module 190. For
15 example, the code pages 212 and data pages 222 may be specified in a
contiguous manner and the end of module marker 250 may comprise a
predefined bit pattern that signals the end of the code pages 212 and data pages
222. |t should be appreciated that the AC module 190 may specify its length -
and/or end in a number of‘different manners. For example, the header 230 may
20 specify the number of bytes or the number of pages the AC module 190 contains.
P:!tematively, launch AC and terminate AC instructions may expect the AC module
190 be a predefined ‘number of bytes in leﬁgth or contain a predefined number of
pages. Further, launch AC and terminate AC instructions may comprise
operands that specify the fength of the AC module 190,

12

BNSDOCIL: «<WO__03058412A2_1_>

WO 03/058412 PCT/US02/41177

[0036] It should be appreciated that the AC module 190 may reside in a
contiguous region of the memory 140 that is contiguous in the physical memory
space or that is contiguous in virtual memory space. Whether physically or
virtually contiguous, the locations of the memory 140 that store the AC module
5 190 may be specified by a starting location and a length and/or end of module
marker 250 may specify. Alternatively, the AC module 190 may be stored in
memory 140 in neither a physically or a virtually contiguous manner. For
example, the AC module 190 may be stored in a data structure such as, for
example, a linked list that permits the computing device 100 to store and retrieve
10 the AC module 190 from the memory 140 in a non-contiguous manner.
[0037] As will be discussed in more detail below, the example processors
110 support launch AC instructions that load the AC module 190 into private
memory 160 and initiate execution of the AC module 190 from an execution point
260. An AC module 190 to be launched by such a launch AC instruction may
15 comprise code 210 which when loaded into the private memory 160 places the
execution point 260 at a location specified one or more operands of a launch AC
instruction. Alternatively, a launch AC instruction may result in the processor 110
obtaining the location of the execution point 260 from the AC module 190 itself.
For example, the code 210, data 220, a header 230, and/or signature 240 may
20 comprise one or more fields that specify the location of the execution point 260.
[0038] As will be discussed in more detail below, the example processors
. 110 support I;unch AC instructions that authenticated the AC module 190 prior to
execution. Accordingly, the AC module 190 may comprise information to support
authenticity determinations by the processors 110. For example, the signature

13

BNSDOCID: <WO__03058412A2_1_>

WO 03/058412 ’ PCT/US02/41177

240 may comprise a digest value 242. The digest value 242 may be generated
by passing the AC module 190 through a hashing algorithm (e.g. SHA-1 or MD5)
or some other algorithm. The signature 240 may also be encrypted to prevent
alteration of the dligest value 242 via an encryption algorithm (e.g. DES, 3DES,

5 AES, and/or RSA algorithms). In example embodiment, the signature 240 is
RSA-encrypted with the private key that corresponds to a public key of the
processor key 116, the chipset key 120, and/or platform key 152.

[0039] It should be appreciated that the AC module 190 may be
authenticated via other mechanisms. For example, the AC module 190 may

10 utilize different hashing algorithms or different encryption algorithms. Further, the
AC module 190 may comprise information in the code-210, data 220, headers
230, and/or signature 240 that indicate which algorithms were used. The AC
module 190 n;lay also be protected by encrypting the whole AC module 190 for
decryption via a symmetric or asymmetric key of the processor key 116, chipset

15 key 124, or platform key 152.
[0040] An example embodiment of the processor 110 is illustrated in more
detail in FIG. 3. As depicted, the processor 110 may comprise a front end 302, a
register file 306, one or more execution units 370, and a retirement unit or back
end 380. The front end 302 comprises a processor bus interface 304, a fetching

20 .unit 330 having instruction and instruction pointer registers 314, 316, a decoder
340, an instruction qugue 350, and one or more cache memories 360. The
register file 306 comprises general purpose registers 312, status/control registers
31 8,.and other registers 320. The fetching unit 330 fetches the instructions
specified by the instruction pointer registers 316 from the memory 140 via the

14

BNSDOCHL:: <WO__0305841242_1_>

WO 03/058412 PCT/US02/41177

processor bus interface 304 or the cache memories 360 and stores the fetched
instructions in the instruction registers 314.
[0041] An instruction regis;ter 314 may contain more than one instruction.
According, the decoder 340 identifies the instructions in the instruction registers
5 314 and places the identified instructions in the instruction queue 350 in a form

suitable for execution. For example, the decoder 340 may generate and store
one or more micro-operations (uops) for each identified instruction in the
instruction queue 350. Alternatively, the decoder 340 may generate and store a
single macro-operation (Mop) for each identified instruction in the instruction

10 qﬁeue 350. Unless indicated otherwise the term ops is used hereafter to refer to
both uops and Mops. "~
[0042] The processor 110 further comprises one or more execution units
370 that perform the operations dictated by the ops of the instruction queue 350.
For example, the execution units 370 may comprise hashing units, decryption

15 units, and/or microcode units that implement authentication operations that may
be used to authenticate the AC module 190. The execution units 370 may
perform in-order execution of the ops stored in the instruction queue 350.
However, in an example embodiment, the processor 110 supports out-of-order
execution of ops by the execution units 370. In such an embodiment, the

20 processor 110 may further comprise a retirement unit 380 that removes ops from
the instruction queue 350 in-order/and éommits the results of executing the ops to
one or more registers 312, 314, 316, 318, 320 fo insure proper in-order resuits.
[0043] The decoder 340 may generate one or more ops for an identified
launch AC instruction and the execution units 370 may load, authenticate, and/or

15

BNSDOCID: <WO_03058412A2_)_>

WO 03/058412 PCT/US02/41177

initiateéxecution of an AC module 190 in response to executing the associated
ops. Further, the decoder 340 may generate one or more ops for an identified
terminate AC instruction and the execution units 370 may terminate execution of
an AC module 190, adjust security aspects of the computing device 100, and/or
5 initiate execution of post-AC code in response to executing the associated ops.

[0044] In particular, the decoder 340 may generate one or more ops that
depend on the launch AC instruction and the zero or more operands associated
with the launch AC instruction. Each launch AC instruction and its associated
operands specify parameters for launching the AC module 190. For example, the

10 launch AC instruction and/or operands may specify parameters about the AC
module 190 such as AC module location, AC module length, and/or AC module
execution point. The launch AC instruction and/or operands may also specify
parameters about the private memory 160 such as, for example, private memory
location, private memory length, and/or private memory implementation. The

15 | launch AC instruction and/or operands may further specify parameters for
authenticating the AC module 190 such as specifying which authentication
algorithms, hashing algorithms, decryption algorithms, and/or other algorithms are
to be used. The launch AC instruction and/or operands may further specify
parameters for the algorithms such as, for example, key length, key location,

20 and/or keys. The launch AC instruction and/or operands may further specify
parameters to configure the computer system 100 for AC module launch such as,
for example, specifying events to be masked/u;wmasked and/or security

capabilities to be updated.

16

BNSDOCID <WO__03058412A2_1_>

WO 03/058412 PCT/US02/41177

[0045] The launch AC instructions and/or operands may provide fewer,
additional, and/or different parameters than those described above. Fuﬁhemore,
the launch AC instructions may comprise zero or more explicit operands and/or
implicit operands. For example, the launch AC instruction may have operand

5 values implicitly specified by processor registers and/or memory locations despite
the launch AC instruction itself not comprising fields that define the location of
these operands. Furthermore, the launch AC instruction may explicitly specify the
operands via various techniques such as, for example, immediéte data, register
identification, absolute addresses, and/or relative addresses.

10 [0046]) The decoder 340 may also generate one or more ops that depend
on the terminate AC instructions and the zero or more operands associated with
the terminate AC instructions. Each terminate-AC instruction and its _associated
operands specify parameters for termin'ating execution of the AC module 190. '

For example, the terminate AC instruction and/or operands may specify

15 parameters about the AC moduie 190 such as AC module location and/or AC
module length. The terminate AC instruction and/or operands may also specify
parameters about the private memory 160 such as, for example, private memory
location, private memory length, and/or private implementation. The terminate
AC instruction and/or operands may specify parameters about launching post-AC

20 code such as, for example, launching method and/or post-AC code execution
point. The terminate AC instruction and/or operands may further specify
parameters to configure the computer system 100 for post-AC code execution
such as, for example, specifying events to be masked/unmasked and/or security
capabilities to be updated.

17

BNSDOCID: <WO_ 03058412A2_|_>

WO 03/058412 . PCT/US02/41177

[0047] The terminate AC instructions and/or operands may provide fewer,
additional, and/or different parameters than those described above. Furthermore,
the terminate AC instructions may comprise zero or more explicit operands and/or
implicit operands in @ manner as described above in regard to the launch AC
5 instructions.
[0048] Referring now to FIG. 4, there is depicted a method 400 of
launching an AC module 190. In particular, the method 400 illustrates the
operations of a processor 110 in response to executing an example ENTERAC
instruction having an authenticate operand, a module operand, and a length
10 operand. However, one skilled in the art should be able implement other launch
~AC instructions having fewer, additional, and/or different operands without undue

~—

experimentation.

[0049] in block 404, the processor 110 determines whether the
environment is appropriate to start execution of an AC module 190. For example,

15 the processor 110 may verify that its current privilege level, operating mode,
and/or addressing mode are appropriate. Further, if the processor supports
multiple hardware threads, the processor may verify that all other threads have
halted. The processor 110 may further verify that the chipset 120 meets certain
requirements. In an example embodiment of the ENTERAC instruction, the

20 processor 110 determines that the environment is appropriate in response to
determining that the processor 110isin a protected flat mode of operation, that
the processor’s current privilege level is O, that the processor 110 has/halted all
other threads of execution, and that the chipset 120 provides trusted platform
capabilities as indicated by one or more registers 126. Other embodiments of

18

BNSDOCID. <WO__03058412A2_|_>

WO 03/058412 PCT/US02/41177

launch AC instructions may define appropriate environments differently. Other
launch AC instructions and/or associated operands may specify environment
requirements that result in the processor 110 verifying fewer, additional, and/or
different parameters of its environment.

5 [0050] In response to determining that the environment is inappropriate for
launching an AC module 190, the processor 110 may terminate the ENTERAC
instruction with an appropriate error code (block 408). Alternatively, the processor
110 may further trap to some more trusted software layer to permit emulation of
the ENTERAC instruction.

10 [0051] Otherwise, the processor 110 in block 414 may update event
processing to support launching the AC module 190. In an example embodiment
of the ENTERAC instruction, the processor 110 masks processing of the INTR,
NMI, SMI, INIT, and A20M events. Other launch AC instructions and/or
associated operands may specify masking fewer, additional, and/or different

15 events. Further, other launch AC instructions and/or associated operands may
explicitly specify the events to be masked and the events to be unmasked.
Alternatively, other embodiments may avoid masking events by causing the
coﬁputing device 100 fo execute trusted code such as, for example, event
handlers of the AC module 190 in response to such events.

® 20 [0052) The processor 110 in block 416 may lock the processor bus 130 to
prevent the other processors 110 and the chipset 120 from acquiring ownership of
the processor bus 130 during the Iauncﬁ and éxecution of the AC module 180. In
an example embodiment of the ENTERAC instruction, the processor 110 obtains

exclusive ownership of the processor bus 130 by generating a special transaction

19

BNSDOCID: <WO__03058412A2_1_>

WO 03/058412 PCT/US02/41177

that provides the other processors 110 and the chipset 120 with a
LT.PROCESSOR.HOLD bus message. Other embodiments of launch AC
instructions and/or associated operands may specify that the processor bus 130
is to remain unlocked or may specify a different manner to lock the processor bus
5 130.

[0053] The processor 110 in block 420 may configure its private memory
160 for receiving the AC module 190. The processor 110 may clear the contents
of the private memory 160 and may configure control structures associated with
the private memory 160 to enable the processor 110 to acéess the private

10 memory 160. In an example embodiment of the ENTERAC instruction, the
processor 110 updates one or more control registers to switch the cache memory
112 to the cache-as-l;QAl\A\mode and fnvalidates the contents of its cache memory
112,
[0054] Other launch AC instructions and/or associated operands may

15 specify private memory parameters for different implementations of the private
memory 160. (See, for example,' FIGS. 1A-1E). Accordingly, the processor 110
in executing these other: launch AC instructions may perform different operations
in order to prepare the privéte memory 160 for the AC module 190. For example,
the processor 110 may enable/configure a memory controller (e.g. PM controller

20 138 of F}G. 1E) associated with the private memory 160. The processor 110 may
aiso provide the private memory 160 with a clear, reset, and/or invalidate signal to
clear the private memory 160. Alternatively, the processor 110 may write zeros or

some other bit pattem to the private memory 160, remove power from the private

20

BNSDOCID: <WO__03058412A2_|_>

WO 03/058412 ’) PCT/US02/41177

memory 160, and/or utilize some other mechanism to clear the private memory
160 as specified by the launch AC instruction and/or operands.

[0055] In block 424, the processor 110 loads the AC module 190 into its
private memory 160. In an example embodiment of the ENTERAC instruction,

5 the processor 110 starts reading from a location of the memory 140 specified by
the address operand until a number of bytes specified by the length operand are
transferred to its cache memory 112. Other embodiments of launch AC
instructions and/or associated operands may specify parameters for loading the
AC module 190 into the private memory 160 in a different manner. For example,

10 the othér launch AC instructions and/or associated operands may specify the
Iocatior; of the AC module 190, the locati‘on of thé private memory 160, where the
AC module 190 is to be loaded in the\ private memory 160, and/or the end of the
AC module 190 in numerous different manners.
[0056] In block 428, the processor 110 may further lock the private memory

15 160. In an example embodiment of the ENTERAC instruction, the processor 110
updates one or more control registers to lock its cache memory 112 to prevent
external events such as snoop requests from processors or /O devices from

4 altering the stored lines of the AC module 190. However, other launch AC

instructions and/or associated operands may specify other operations for the

20 processor 170, For example, the processor 110 may configure a memory
controller (e.g. PM controller 128 of FIG. 1E) associated with the private fnemory
160 to prevent the other processors 110 and/or chipset 120 from accessing the

private memory 160. In some embodiments, the private memory 160 may

21

BNSDOCID. <WO__03058412A2_1_>

WO 03/058412 PCT/US02/41177

already be sufficiently locked, thus the processor 110 may take no action in block
428.
[0057] The prdcessor in block 432 determines whether the AC module 190
stored in its private memory 160 is authentic based upon a protection mechanism
5 specified by the protection operand of the ENTERAC instruction. Inan example
embodiment of the ENTERAC instruction, the processor 1 10 retrieves a
processor key 116, chipset key 124, and/or platform key 152 specified by the
protection operand. The processor 116 then RSA-decrypts the signature 240 of
the AC module 190 using the retrieved key to obtain the digest value 242. The

10 processor 110 further hashes the AC module 190 using a SHA-1 hash to obtain a
computed digest value. The processor 110 then determines that the AC module
190 is authentic in response to the computed~ dig\est value and the digest value
242 having an expected relationship (e.g. equal to one another). Otherwise, the
processor 110 determines that the AC module 190 is not authenticate.

15 [0058] Other launch AC instructions and/or associated operands may
specify different authentication paraheters. For example, the other launch AC
instructions and/or associated operands may specify a different authentication
method, different decryption algorithms, and/or different hashing algorithms. The
other launch AC instructions and/or associated operands may further specify

20 different key lengths, different k.ey locations, and/or keys for authenticating the AC
module 190.

[0059] In response to determining that the AC module 190 is ‘not authentic,
the processor 110 in block 436 generates an error code and terminates execution
of the launch AC instruction. Otherwise, the processor 1 10 in block 440 may

22

BNSDOCID: <WO__03058412A2_1_>

WO 03/058412 PCT/US02/41177

update security aspects of the computing device 100 to supbort execution of the
AC module 190. In an example embodiment of the ENTERAC instruction, the
processor 110 in block 440 writes a OpenPrivate command to a command
register 126 of the chipset 120 to enable the processor 110 to access registers
5 126 via the private space 142 with normal unprivileged read and write
transactions.
[0060] Other launch AC instructions and/or associated operands may
specify other operations to configure the computing device 100 for AC module
execution. For example, a launch AC instruction and/or associated operands

10 may specify that the processor 110 leave the private space 142 in its current
state. A launch AC instruction and/or associated operands may also specify that
the processor 110 enable and/or disable access to certain cgmputing resources
such as protected memory regions, protected storage devices, protected
partitions of storage devices, protected files of storage devices, etc.

15 [0061] After updating security aspects of the computing device 100, the
processor 110 in block 444 may initiate execution of the AC module 190. In an
example embodiment of the ENTERAC instruction, the processor 110 loads its
instruction pointer register 316 with the physical address provided by the module
operand resuiting in the processor 110 jumping to and executing the AC module

20 190 from the execution point 260 specified -by the physical address. Other launch
AC instructions and/or associated operands may specify the location of the
execu_tion point 260 in a number of alternative manners. For example, a launch
AC instruction and/or associated operands may result in the processor 110
obtaining the Iocatio'n of the execution point 260 from the AC module 190 itself.

23

BNSDOCID: <WO__03058412A2_1_>

WO 03/058412 PCT/US02/41177

[0062] Referring now to FIG. 5, there is depicted a method 500 of
terminating an AC module 190. In particular, the method 500 illustrates the
operations of a processor 110 in response to executing an example EXITAC
instruction having a protection operand, an events operand, and a launch
5 operand. However, one skilled in the art should be able to implement other
terminate AC instructions having fewer, additional, and/or different operands
without undue experimentation.
[0063] In block 504, the processor 110 may clear and/or reconfigure the
private memory 160 to prevent further access to the AC module 190 stored in the
10 private memory 160. In an example embodiment of the EXITAC instruction, the
processor 110 invalidates its cache memory 112 and updates control registers to
switch the cache memory 112 to the normal cache mode of operatién. =
[0064] A terminate AC instruction and/or associated operand may specify
private memory parameters for different implementations of the private memory
15 160. (See, for example, FIGS. 1A-1E). Accordingly, a terminate AC instruction
and/or associated operand may result in the processor 110 performing different
operations in order to prepare the computing device 100 for post-AC code
execution. For example, the processor 110 may disable a memory controller (e.g.
PM controller 128 of FIG. 1E) associated with the private memory 160 to prévent
20 further access to the AC module 190. The procgssor 1.10 may also provide the
- private memory 160 with a clear, reset, and/or invalidate signal to clear the pn'Vate
memory 160. Alternatively, .the processor 110 may write zeros or some other bit

pattern to the private memory 160, remove power from the private memory 160,

24

BNSOOCIC: <WO__0305841242_1_>

WO 03/058412 PCT/US02/41177

and/or utilize some other mechanism to clear the private memory 160 as specified
by a terminate AC instruction and/or associated operands.
[0065] The processor 110 in block 506 may update security aspects of the
computing device 100 based upon the protection operand to support post-AC
5 code execution. In an example embodiment of the EXITAC instruction, the
protection operand specifies whether the processor 110 is to close the private
space 142 or leave the private space 142 in its current state. In response to
determining to leave the private space 142 in its current state, the processor 110
proceeds to block 510. Otherwise, the processor 110 closes the private space
10 142 by writing a ClosePrivate command to a command register 126 to prevent the
- " processors 110 from further accessing the registers 126 via normal unprivileged
read and wri‘te transactions to the private space 142. -
[0066] A terminate AC instruction and/or associatéd operands of another
embodiment may result in the processor 110 updating other security aspects of
15 the computing device 100 to support execution of code after the AC module 190.
For example, a terminate AC instruction and/or associated operands may specify
that the processor 110 enable and/or disable access to certain computing
resources such as protected memory régions, protected storage devices,
protected partitions of storage devices, protected files of storage devices, etc.
20 [0067] The processor 110 in block 510 may unlock tke procéssor bus 130
to enable other processors 110 and the chipset 120 to acquire ownership of the
processor bus 130. In an example embodiment of the EXITAC instruction, the
processor 110 releases exclusive ownership of the processor bus 130 by

generating a special transaction that provides the other processors 110 and the

25

BNSDOCID: <WO__03058412A2_1_>

WO 03/058412 PCT/US02/41177

chipset 120 with a L T.PROCESSOR.RELEASE bus message. Other
embodiments of terminate AC instructions and/or associated operands may
specify that the processor bus 130 is to remain locked or may specify a different
manner to unlock the processor bus 130.

5 [0068] The processor 110 in block 514 may update events processing
based upon the mask operand. In example embodiment of the EXITAC
instruction, the mask operand specifies whether the processor 110 is to enable
events processing or leave events processing in its current state. In response to
determining to leave events processing in its current state, the processor 110

10 proceedé to block 516. Otherwise, the processor 110 unmasks the INTR, NMI,

~SMI, INIT, and A20M events to enable processing of such events. Other

~

terminate AC instructions and/or associated operands may specify unmasking
fewer, additional, and/or aiﬁerent events. Further, other terminate AC instructions
and/or associated operands may explicitly specify the events to be masked and
15 the events to be unmasked.
[0069] The processor 110 in block 516 terminates execution of the AC
module 190 and launches post-AC code specified by the launch operand. Inan
example embodiment of the EXITAC instruction, the processor 110 updates its
code segment register and instruction pointer register with a code segment and
20 segment offset specified by the launch operand. As a result, the procgssor 1‘10
jumps to and begins executing from an execution point of the post-AC code
specified by the code segment and segment offset.
[0070] Other terminate AC modules and/or associated operands may'
specify the execution point of the post-AC code in a number of different manners.

26

BNSDOC!Y: <WO_03058412A2_1_>

WO 03/058412 PCT/US02/41177

For example, a launch AC instruction may result in the processor 110 saving the
current instruction pointer to identify the execution point of post-AC code. In such
an embodiment, the terminate AC instruction may retrieve the execution point
saved by the launch AC instruction and initiate execution of the post-AC code
5 from the retrieved execution point. In this manner, the terminate AC instruction

returns execution to the instruction following the launch AC instruction. Further, in
such an embodiment, the AC module 190 appears to have been called, like a
function call or system call, by the invoking code.
[0071] Another embodiment of the computing device 100 is shown in FIG.

10 6. The computing device 100 comprises processors 110, a memory interface 620
that provides the processors 110 access to a memory space 640, and a media
interface 170 thaf provides the processors 110 access to media 180. The
memory space 640 comprises an address space that may span multiple machine
readable media from which the processor 110 may execute code such as, for

15 example, firmware, system rﬁemory 140, private memory 160, hard disk storage,
network storage, etc (See, FIGS. 1A-1E). The memory space 640 comprises pre-
AC code 642, an AC module 190, and‘post-AC code 646. The pre-AC code 642
may comprise operating system code, system library code, shared library code,
applicaﬁbn code, firmware routines, BIOS routines, and/or other routines that may

20 launch execution of an AC module 190. The post-AC code 646 may similarly -
comprise operating system code, system library code, shared library code,
application code, firmware routines, BIOS routines, and/or other routines that may

be executed after the AC module 180. It should be appreciated that the pre-AC

27.

BNSDOCID: <WO__03058412A2__>

WO 03/058412 PCT/US02/41177

code 642 and the post-AC code 646 may be the same software and/or firmware
module or different software and/or firmware modules.
[0072] An example embodiment of launching and terminating an AC
module is illustrated in FIG. 7A. In block 704, the computing device 100 stores
5 the AC module 190 into the memory space 640 in response to executing the pre-

AC code 642. In an example embodiment, the computing device 100 retrieves
the AC module 190 from a machine readable medium 180 via the media interface
170 and stores the AC module 190 in the memory space 640. For example, the
computing device 100 may retrieve the AC module 190 from firmware, a hard

10 drive, system memory, network storage, a file server, a web serQer, etc and may

store the retrieved AC nifodule 190 intb a system memory 140 of the computing

~

device 100.
[0073] The computing device 100 in block 708 loads, authenticates, and
initiates execution of the AC module 190 in response to executing the pre-AC
15 code 642. For example, the pre-AC code 642 may comprise an ENTERAC
instruction or another launch AC instruction that results in the computing device
100 transferring the AC module 190 to private memory 160 of the memory space
640, authenticating the AC moduie 190, and invoking execution of the AC module
190 from its execution point. Alternatively, the pre-AC éode 642 may comprise a
20 series of instructions that result in the computing device 100 transferring the AC
module 190 to private memory 160 of the memory space 640, authenticating the

AC module 190, and invoking execution of the AC module 190 from its execution

point.

28

BNSDOCIL: <WO__03058412A2_{_>

WO 03/058412 PCT/US02/41177

[0074] In.block 712, the computing device 100 executes the code 210 of
the AC module 190 (See, FIG. 2). The computing device 100 in block 716
terminates execution of the AC module 190 and initiateé execution of the post-AC
code 646 of the memory space 640. For example, the AC module 180 may
5 comprise an EXITAC instruction or another terminate AC instruction that results in

the computing device 100 terminating execution of the AC module 190, updating
security aspects of the computing device 100", and initiating execution of the post-
AC code 646 from an execution point of the post-AC code 646. Alternatively, the
AC module 190 may comprise a series of instructions that result in the computing

10 device 100 terminéting execution of the AC module 190 and initiating execution of
the posi—AC code 646 from an execation point of the post-AC code 646.
[0075] Another example embodimént of launching and terminating an AC
module is illustrated in FIG. 7B. In block 740, the computing device 100 stores
the AC module 190 into the memory space 640 in response to executing the pre-

15 AC code 642. In an example embodiment, the computing device 100 retrieves
the AC module 190 from a machine readable medium 180 via the media interface
170 and stores the AC module 190 in the memory space 640. For example, the
computing device 100 may retrieve the AC module 190 from firmware, & hard
drive, system memory, netyvork storage, a file server, a web server, etc and stores

20 the retrieved AC module 190 into a system memory 140 of the computing device
100,
[0076] The computing device 100 in block 744 loads, authenticates, and
initiates execution of the AC module 190 response to executing the pre-AC code
642. The computing device in block 744 further saves an execution point for the

29

BNSDOCID: <WO_03058412A2_1_>

10

15

20

WO 03/058412 PCT/US02/41177

post-AC code 646 that is based upon the instruction pointer. For example, the
pre-AC code 642 may comprise an ENTERAC instruction or another launch AC
instruction that results in the computing device 100 transferring the AC module
190 to private memory 160 of the memory space 640, authenticating the AC
module 190, invoking execution of the AC module 190 from its execution point,
and saving the instruction pointer so that the processor 110 may retum to the
instruction following the launch AC instruction after executing the AC module 190.
Alternatively, the pre-AC code 642 may comprise a series of instructions that
result in the computing device 100 transferring the AC module 190 to private
memory 160 of the memory space 640, authenticating the AC module 190,
invoking execution of the AC module 190 fromits execution point, and saving the
instruction po_inter. ®
[0077] In block 748, the computing device 100 executes the code 210 of
the AC module 190 (See, FIG. 2). The computing device 500 in block 752
terminates execution of the AC médule 190, loads the instruction pointer based
execution point saved in block 744, and initiates execution of the instruction
following the launch AC instruction or the series of instructions executed in block
744. For example, the AC module 190 may comprise an EXITAC instruction or
another terminate AC instruction that results in the computing device 100
terminating execution of the AC module 190, updating security aspects of the
computing deyice 100, and initiafing execution of the post-AC code 646 from an
execution point of the post-AC code 646 specified by the instruction pointer saved
in block 744. Alternatively, the AC module 190 may comprise a series of

instructions that result in the computing device 100 terminating execution of the

30

BNSDOCID: <WO_03058412A2_1_>

WO 03/058412 PCT/US02/41177

AC module 190, updating security aspects of the computing device 100, and
initiating execution of the post-AC code 646 from an execution point of the post-
AC code 646 specified by the instruction pointer saved in block 744,
[0078] FIG. 8 illustrates various design representations or formats for
5 simulation, emulation, and fabrication of a design using the disclosed techniques.

Data representing a design may represent the design in a number of manners.
First, as is useful in simulations, the hardware may be represented using a
hardware description language or another functional description language which
essentially provides a computerized model of how the designed hardware is

10 expected to perform. The hardware model 810 may be stored in a storage
medium 800 such as a computer memory so that the model may be simulated
using simulation software 820 that applies a particular test suite 830 to the
hardware mbdel 810 to determine if it indeed functions as intended. in some
embodiments, the simulation software is not recorded, captured, or contained in

15 the medium. |
[0079] Additionally, a circuit level model with logic and/or transistor gates
may be produced at some stages of the design process. This model may be
similarly simulated, sometimes by dedicated hardware simulators that form the
model using programmable logic. This type of simulation, taken a degree further,

20 may be an emulation technique. In any case, re-configurable hardware is another
embodiment that may involye a machine readable medium storing a model
employing the disclosed techniques.
[0080] Furthermore, most designs, at some stage, reach a level of data
representing the physical placement of various devices in the hardware model. In

31

BNSDOCID: <WO__03058412A2_{_>

WO 03/058412 PCT/US02/41177

the case where conventional semiconductor fabrication techniques are used, the
data representing the hardware model may be the data specifying the presence
or absence of various features on different mask layers for maéks used to
produce the integrated circuit. Again, this data representing the integrated circuit
5 embodies the techniques disclosed in that the circuitry or logic in the data can be

simulated or fabricated to perform these techniques.
[0081] In any representation of the design, the data may be stored in any
form of a computer readable medium. An optical or electrical wave 860
modulated or otherwise generated to transmit such information, a memory 850, or

10 a magnetic or optical storage 840 such as a disc may be the medium. The set of
bits describing the design or the particular part of the design are an article that
may be sold in and of itsélf or used by others for further design or fabrication.
[0082) While certain exemplary embodiments have been described and
shown in the accompanying drawings, it is to be understood that such

15 embodiments are merely illustrative of and not restrictive on the broad invention,
and that this invention not be limited to the specific constructions and
arrangements shown and described, since various other modifications may occur

to those ordinarily skilled in the art upon studying this disclosure.

20

32

BNSDOCIHD): <WO__03058412A2_1_>

WO 03/058412 PCT/US02/41177

What is claimed is:

1. A method comprising
transferring an authenticated code module to a pn'véte memory; and
executing the authenticated code module stored in the private memory in

5 response to determining that the authenticated code module stored in the private

memory is authentic.

2 The method of claim 1 further wherein transferring comprises transferring a
number of bytes specified by an operand from a memory.

10
3. The method of claim 1 further comprising

configuring a cache memory of the processor to operate like a random
access memory,
wherein transferring corhprises storing the authenticated code module in

15 the cache memory.

4. The method of claim 3 further comprising invalidating the cache memory prior

to storing the authenticated code module in the cache memory.

20 5. The method of claim 3 further comprising locking the cache memory to prevent

lines of authenticated code module from being replaced.

33

BNSDOCID <WO, _03058412A2_I_>

10

15

20

WO 03/058412 PCT/US02/41177

6. The method of claim 1 further comprising determining whether the
authenticated code is authentic based upon a digital signature of the -

authenticated code module.

7. The method of claim 1 further comprising
obtaining a first value from the authenticated code module stored in the
private memory,
corhputing a second value from the authenticated code module; and
determining that the authenticated code module is authentic in response to

the first value and the second value having a predetermined relationship.

8. The method of claim 1 further comprising
retrieving a key, |
decrypting a digital signature of the authenticated code module with the
key to obtain a first value,
hashing the authenticated code module to obtain a secovnd value; and
executing the authenticated code module in response to the first value and

the second value having a predetermined relationship.

9. The method of claim 8 wherein

decrypting comprises using the key to RSA-decrypt thg digital signature,
and

hashing comprises apply a SHA-1 hash to the authenticated code module
to obtain the second value.

34

BNSDOCIY: <WD__03058412A2_1_>

WO 03/058412 PCT/US02/41177

10. The method of claim 8 further comprising retrieving the key from the

processor.

5 11. The method of claim 8 further comprising retrieving the key from a chipset.

12. The method of claim 8 further comprising retrieving the key form a token.

13. The method of claim 1 wherein transferring comprises receiving the
10 authenticated code module from a machine readable medium.
14. A computing device, comprising
a chipset;
a memory coupled to the chipset;
15 a machine readable medium interface to receive an authenticated code
‘module from a machine readable medium;
a private memory coupled to the chipset; and
a processor to transfer the authenticated code module from the machine
readable medium interface to the private memory and to authenticate the

20 authenticated code module stored in the private memory.

15. The computing device of claim 14, wherein the chipset comprises a memory
controller coupled to the memory and a separate private memory controller
coupled to the private memory.

35

BNSDOCID: <WO_0305841242_I, >

WO 03/058412 .) PCT/US02/41177

16. The computing device of claim 14, wherein
the chipset comprises a key, and

the processor authenticates the authenticated code module stored in the

5 private memory based upon the key of the chipset.

17. The computing device of claim 14, wherein
the processor comprises a key and authenticates the authenticated code
module stored in the private memory based upon the key of the processor.
10
18. The computing device of claim 14, further comprising
a token C(;Ip[ed to the chipset, the token comprising a key, wherein
the processor authenticates the authenticated code module stored in the
private memory based upon the key of the token.
15
19. A computing device, comprising
a chipset;
a machine readable medium interface to receive an authenticated code
module from a machine readable me>dium; and
20 a processor coupled to the chipset via a processor bus, the processor to
transfer the authenticated code module from the machine readable medium

interface to a private memory of the processor and to aqthenticate the

authenticated code module stored in the private memory.

36

BNSDOCID: <WO_03058412A2_1_>

WO 03/058412 PCT/USU2/41177

20. The computing device of claim 19, wherein the private memory is coupled to

the processor via a dedicated bus.

21. The computing device of claim 19. wherein the private memory is intemal to

5 the processor.

22. The computing device of claim 19, wherein the private memory comprises

intemal cache memory of the processor.

10 23. The computing device of claim 19, further comprises
other processors coupled to the chipset via the processor bus, wherein
the processor further locks the processor bus to prevent the other

processors from altering the authenticated code module.

15 24. A computing device, comprising
a memory,

a chipset comprising a memory control that defines a portion of the

memory as private memory;,

a machine readable medium to receive an authenticated code module from

20 a mathine readable medium; and

a processor to transfer the authenticated code module from the machine
readable medium interface to the private memory and to authenticate the

authenticated code module stored in the private memory.

37

BNSDOCID: <WO_0305841242_1 >

WO 03/058412 PCT/US02/41177

25. The computing device of claim 24, wherein the chipset comprises a memory
controlier coupled to the memory and a separate private memory controller

coupled to the private memory.

5 26. The computing device of claim 24, wherein
_ the chipset comprises a key, and

the processor authenticates the authenticated code module stored in the

private memory based upon the key of the chibset.

10 27. The computing device of claim 24, wherein

the processor comprises & key and authenticates the authenticated code

module stored in the private memory bas:ed upon the key of the processor.

28. The computing device of claim 24, further comprising

15 a token comprising a key, wherein

the processor authenticates the authenticated code module stored in the

private memory based upon the key of the token.
29. A machine readable medium comprising one or more instructions that in

20 response to being executed resultin a computing device

transferring an authenticated code module to a private memory associated

with a processor; and

38

BNSDOCID: <WO__03058412A2_1_>

WO 03/058412 PCT/USO2/41177

executing the authenticated code module stored in the private memory in

response to determining that the authenticated code module stored in the private

memory is authentic.

5 30. The machine readable medium of claim 29, wherein the one or more
instructions in response to being executed result in the computing device
determining whether the authenticated code is authentic based upon a

digital signature of the authenticated code module.

10 31. The machine readable medium of claim 29, wherein the one or more
instructions in response to being executed result in the computing device
obtaining a first value from the éuthentica%ed?ode module stored in the
private memory;
computing a second value from the authenticated code module; and
15 determining that the authenticated code module is authentic in response to

the first value and the second value having a predetermined relationship.

32. The machine readable medium of claim 29, wherein the one or more
instructions in response to being executed result in the computing device
20 retrieving an asymmetric key;
decrypting a digital signature of the authenticated code module with the

asymmetric key to obtain a first value;

hashing the authenticated code module to obtain a second value; and

39

BNSDOCID: <WO__03058412A2_1_>

WO 03/058412 PCT/US02/41177

initiating execution of the authenticated code module in response to the

first value and the second value having a predetermined relationship.

33. The machine readable medium of claim 29, wherein the one or more
5 instructions comprises a launch instruction that in response to being executed

results in the computing device
retrieving an asymmetric key;
decrypting a digital signature of the authenticated code module with the

asymmetric key to obtain a first value;

10 hashing the authenticated code module to obtain a second value; and

initiating execution of the authenticated code module in response to the

first value and the second value having a predetermined relationship.
34. The machine readable medium of claim 33, wherein the one or more

15 instructions in response to being executed result in the computing device

receiving the authenticated code module via a machine readable medium

interface.

40

BNSDOCID: <WO__03058412A2__>

WO 03/058412 PCT/US02/41177
1/12
100
Processor Processor
110 110
Cache Key Cache Key
12 118 112 116
PM Control PM Control
160 Registers 160 Registers
114 114
i
~ Processor Bus 130 -
Physical {;
Token Chipset
- 150 AN 120 Memory
Key N—V 140
152 P Private Sp
rivate Space
Reg Memory NN 142
s Controller / ==
122
Media 128 :
Public Space
{) 124
Media
180
AC
Module
190 FIG. 1A

BNSDOCID: \WO__03058412A2_1_>

WO 03/058412 PCT/US02/41177
2/12
100
Processor Processor
110 110
PM Key PM Key
160 116 160 116
ache || codistes cashe | | pociutors
~ Processor Bus 130 T
Physical U
Token Chipset
150 A—N 120 Memory
Key | IN—V 140
152
— Private Space
Memory A N :
Controller / 142
122
Media Public Space
Interface K ::> Key 144
170 124
Media
180 .
AC
Module F I .
190

BNSDOCID: <WO__03058412A2_1_>

WO 03/058412

PCT/US02/41177

100

3/12
PM PM
160 160
Processor Processor
110 110
Key Key
116 116
Cache Coptrol Cache COI:Itl’Ol
112 Registers 112 Registers
— 114 _ 114

Physical
Token
150

Key
152

o

Processor Bus 130

]

L

(=

Media
Interface
170

U

{]

Chipset
120 Memory
140
3 Private Space
Reg | | Comroter KN | 142
s N—
126 122 '
Public Space
- 44
Key 144
124

Media
180

AC
Module
190

BNSDOCID: <WO__03058412A2_1_>

FIG. 1C

WO 03/058412

4/12
Processor Processor
110 110
Key Key
16 116
Cache Coptrol Cache Coptrol

112 Registers 112 Registers
T 114 _‘ 114

PCT/US02/41177

100

!

Physical
Token
150

Key
152

3 j
Processor Bus 130

a

-

Media
Interface
170

{

Memory
140

AN
—

Private Space

142

Chipset
120
Memory
R:g Controller
126 122
Key
124

Public Space

Media
180

AC
Module
190

FIG. 1D

BNSDOCID: <WO_0305841242_1_>

WO 03/058412 PCT/US02/41177

100

5/12 _ /

Processor Processor
110 110
Key Key
116 116
Cache Cof‘tml Cache Coptrol
112 Registers 112 Registers
—_ 114 114

= 73

Processor Bus 130

Physical { }

Token . Chipset
150 120
ey Memory _
152 o AN
— Controller Private Space
122 |V V 142
Media Key Publi::jpace
" Interface K N 124 ' 144
170) '
PM
Controlier
128

Media

. I
AC
Module

190

160

FIG. 1E

BNSDOCID: <WO_03058412A2_1_>

WO 03/058412 PCT/US02/41177
6/12 /1 90
AC Module
(Header)
230
Data Page Data
222 220
> Z
Execution Point W
260
Code Page
212
Code Page Code
212 210
Code Page
212
Lﬁ Y,
Signature 240
Data Page Digest Value 242 Data
222
End of Module Marker
k 250

BNSDOCID: <WO__03058412A2_|_>

FIG. 2

PCT/US02/41177

WO 03/058412

7/12

- € 9ld

08¢
sjiun
Juswaley

U

0cE
sig)sifay

3410

k4%
s1a)s1bay 49O

8lE

si19)sibay
|jouoo/sniels

90¢
o)l Joys1bay

0S¢

snanpd \/.IIIV

uolonJIsuy

0Pt -
JjopooaQ

vi€
si19)sibay
uolonisuy

0¢E
nun Buyoled

ol¢
s19)sibay

di

{1

73
1§

spun
uonnoaxg

09¢
Aowsip

ayoe)

¥0E
aoepeu|
sng 10SSa001d

—

0% pu3 Juol4

1>

BNSDOCID: <WO__03058412A

© PCT/US02/41177

WO 03/058412

8/12

=

v Old

k127
e|npoiN IV JO
uonnosx3 eeniy}

-

|

30b
apo) Joug ——
sjelsusn)

%4
2pon Joug
ejelsunn)

ovp
ao1neQ Bungndwod JO
spadsy Ayunoag ejepdn

oov

anuayiny
aInpo OV
ayL s|

2147
Aowspy @1enlld
3007

%

{247

Kiowsy ejeald
Oju| 8p0D 8INPo DV peoT

L

_
0T

Kowsyy sleald
ainbyuod

%

oi¥

Sng 10Ss8d01d
%07

%

457 <
Buisssoalg
sjuang ayepdn

{BINPON OV
younen 0, JusWwiuolAug
Jedolg

s

BNSDOCID: <WO__03058412A2_1 >

WO 03/058412 PCT/US02/41177

(Begin) Aj
v

Clear/Reconfigure Protected
AC Memory
504

v

Update Security Aspects
Of Computing Device
506

v -

Release Process Bus ~
From Processor
510

v

Update
Events Processing -
514

!

Terminate AC Module And
Launch Post-AC Code
516

v
(End)

500

FIG. 5

BNSDOCID: <WO__03058412A2_1_>

WO 03/058412

BNSDOCID: <WO__03058412A2_1_>

Processor
110

Proéessor
110

Physical
Token
150

Media
Interface
170

IRIRIE

g

Media
170

PCT/US02/41177

600

Memory Interface
620

{1

Memory Space
640

Pre-AC Code
642

AC Module
190

FIG. 6

Post-AC Code
646

WO 03/058412

(Ban)
v

PCT/US02/41177

(Begn)
v

Pre-AC Code Results In
Device Storing AC Module In
Memory Space
704

Pre-AC Code Results In
Device Storing AC Module
In Memory Space
740

v

v

Pre-AC Code Results In
Device Loading,
Authenticating, And
Launching AC Module
708

v

Pre-AC Code Results In
Device Loading,
Authenticating, Launching
AC Module, And Storing
Instruction Pointer Based
Execution Point
744

Device Executes
AC Module
712

v

v

Device Executes
AC Module
- 748

Device Terminates AC
Module And Launches
Post-AC Code
716

v

¢ |
C End)

FIG. 7A

BNSDOCID: <WO_03058412A2_1 >

Device Teminates AC
Module And Launches
Post-AC Code From Stored
Instruction Pointer Based
Execution Point
752

v
C End)

FIG. 7B

WO 03/058412

12/12

Machine Readable Medium

800
Simulation
Software Hardware Model
820 (HDL or Physical
Design Data)
810
. Test
Stuite
830)
Fabrication

BNSDOCID: <WO__0305841242_1_>

FIG. 8

PCT/US02/41177

Memory
850

Storage Device
840

AL

Wave
860

	2004-07-02 Foreign Reference

